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Abstract

The aim of this project was to develop and study numerical methods for the solutions
of hyperbolic equations that include uncertainties. In particular application to elec-
tromagnetics waves have been considered. The following results were obtained during
this research: 1. The nature of the deterministic systems resulting from applying the
polynomial chaos method to an hyperbolic system was clarified, nd in particular the
role of the boundary conditions. 2. The evolution of the probability density func-
tions of uncertainties in problems described by hyperbolic systems was found, and an
application to the Maxwells equations of electromagnetics had been carried out. 3.
Reduced basis methods have been applied to several wave propagation problems.

1 Galerkin Method for Wave Equations with Un-
certainty

In [10] the polynomial chaos method applied to wave problems have been considered.
In recent years there is a growing interests in studying efficient numerical methods for
solving differential equations with random inputs. Many approaches can be employed,
among which the Polynomial Chaos (PC) based methods have received intensive at-
tention. The original PC method was developed by R. Ghanem and was inspired
by the Wiener chaos expansion which uses Herimte polynomials of Gaussian random
variables to represent random processes. Later the approach was extended to general-
ized Polynomial Chaos (gPC) where general orthogonal polynomials are adopted for
improved representations of more general random processes. With PC/gPC serving
as a complete basis to represent random processes, a stochastic Galerkin projection
can be used to transform the (stochastic) governing equations to a set of determin-
istic equations that can be readily discretized via standard numerical techniques.
Although such a Galerkin approach is effective in many problems, its application
to hyperbolic problems is limited. The primary reason is because the properties of
the resulting system of equations from a Galerkin projection is not fully understood.
When uncertainty does not change the direction of the characteristics, the Galerkin
system can be shown to be hyperbolic and solved in a straightforward manner. .

We studied the application of the gPC Galerkin method to the simulations of hy-
perbolic systems that contain uncertainties. In general these uncertainties may enter
through initial conditions, boundary conditions or through uncertainties in the co-
efficients of the problem. In solving numerically the Maxwell’s equations of electro-
magnetics, for example, one often faces uncertain material properties or small scales



that can not be resolved and have to be modeled statistically. Here we deal with the
case that the coefficients are functions of random variables. In particular we use a
scale wave equation as a model and study the situation in which the inflow-outflow
conditions change as a function of a random variable.

We have shown that the deterministic system is a symmetric hyperbolic system with
positive as well negative eigenvalues. A consistent and stable method of imposing the
boundary conditions is outlined. The boundary conditions are not satisfied exactly
at the boundaries but rather to the order of the scheme. Convergence of the scheme
is established.

A simple scalar equation that illustrates the difficulties in applying the (generalized)
Polynomial Chaos to hyperbolic equations is:

ou(z,t,y) ou(z,t,y)
o W5,

, ze(-1,1), t>0, (1)

where ¢(y) is a random transport velocity of a random variable y € 2 in a properly de-
fined complete random space with event space ) and probability distribution function
p(y). With this the expectation of a given function is E[f(y)] = [ f(y)p(y)dy.

The initial condition is given by

uw(z,0,y) = ug(z,y). (2)

The boundary conditions are more complicated as they depend on the sign of the
random transport velocity c(y). A well posed set of boundary conditions is given by:

u(l,t,y) = ug(ty) cly) >0,
'U/(_‘l,t,'y) = UL(t,:Ij) C(y) <0.

For simplicity we will discuss the case of random variable y with beta distribution
in (—1,1) (upon proper scaling). In this case the expansion functions P, are the
(normalized) Jacobi polynomials. (Note this includes the special case of Legendre
polynomials with uniformly distributed random variable .)

In the gPC Galerkin method we seek an approximation to the true solution via a
finite-term gPC expansion

N

k=0
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and project
Jv(x, t, ov(w,t,1
fv({_, y) () v(z,,y)
ot Ox
onto the subspace spanned by the first (N 4 1) gPC basis polynomials and obtain the
following system

=0

N
. 2 i =0,... N.
(()i Za/]yk ) ..]

(4)

k=0

If we denote by A the (N + 1) x (N + 1) matrix whose entries are {a;}to<jr<n and
v = (B, -+, 0n)7 a vector of length (N + 1), then system (4) can be written as

ov(z,t)  ov(z,t)
ot =4 dx (5)

Note that from the definition aj;, = ax;, ie., A = AT the system (5) is therefore
symmetric hyperbolic, this is consistent with the fact that the original equation (1) is
hyperbolic for each realization of y.

A less trivial question is the nature of the inflow-outflow boundary conditions. The
boundary conditions for the original scalar equation (1) depend on the particular
realization of the random variable y (see (3)). However upon the Galerkin projection
in the random dimension the deterministic system (5) is independent of . In Theorem
1 we investigate how the inflow-outflow conditions are reflected in the system (5).

Theorem 1:

Consider the deterministic system (5) where the coefficients a;zare defined. Then if
e(y) > 0 (reps. c(y) < 0) for all y, then the eigenvalues of A are all non-negative
(veps. non-positive); if ¢(y) changes sign, i.e., c(y) > 0 for some y and c(y) < 0 for
some other y, then A has both positive and negative eigenvalues.

Based on Theorem 1 have developed a stable way of employing boundary conditions

for the GPC method for hyperbolic systems of equations. A detailed discussion is
presented in [10]



2 Evolution of PDF forHyperbolic Equations with

Uncertainties

In [12] the evolution of the probability density function was considered for PDEs that
simulate wave phenomena containing uncertainties .

Hyperbolic equations (such that the Euler equations of gas dynamics or the Maxwell’s
equations of electromagnetics) may contain uncertainties in the coefficients of the
equations or in the data (initial or boundary conditions). One way of treating these
uncertainties is to model them by random variables with some known distributions.
However, even if the initial distributions are known, the probabilistic properties of the
solution changes in time. We propose to study this behavior in order to understand
the time development of the solutions.

In {12} the cumulative (or probability) distribution function (CDF) of the output
solutions of some one-dimensional wave equations fluctuating by the random changes
in the media parameters was computed. We will review here this work.

The numerical tool to handle randomness, we employ the technique of the so-called
polynomial chaos (PC) expansions The main advantage of the PC expansions is that
we separate the deterministic and the non-deterministic parts in the functions u so
that we can compute numerically each PC mode ug(x,t); we only have to compute
the PC modes once instead of evaluating the output solution for each ¢*.

We work with both the exact solutions and the numerical ones of the one-dimensional
problems. We then compare the statistics for both solutions (e.g. PDF, CDF, mean,
variance and moment generating function, e.t.c.).

Although in general the explicit solutions of PDE are not available or of some com-
plicated forms, some known solutions can validate the numerical (or experimental)
solutions. Furthermore, we can derive explicitly the probability distribution /density
functions of output solutions and we can then trace down how the randomness in the

input data affects the output. We also derive the moment generating function, mean
and variance.

We considered the 1-D Maxwell equations for (u,v)” = (ué(z,t),vé(z,t))7 in Q =



(—00,00) x (0,00):
2 6><5> e (2.1)

where (permeability, permittivity) = (u, €) = (p, €1) for © < € and = (ug, €2) for z >
€, t, fia, €1, €2 > 0, € is a random variable and has a uniform PDF g(¢) = x(-1,1)(¢).

Let c=1//en, ¢y = 1/ /ey and ¢y = 1/, /Eafiz with ¢ # co.
We found the distribution function F(s) for the output w. By definition, we have

F(s) = Plu < s) = ZP(U <s, (z,t) € Q). (2.2)

We can deduce the distribution function F'. For example, if hy(x) = z, ho(z) = 2z,
pr =¢€1 =1, gy = e = 1/3 (thus ¢; =1, ¢y = 3), we then find the solutions:

x+ 2t in Qo,

) 4x 45t -3¢ inQ,
YN e st— e iy, (2.3)

x + 6t in Q3.

At the point, e.g. (z,t) = (0,1), since P(2< s, £ >1)=P(6 < s, £ <—3) =0, we
deduce:

F(s)=P(5-3t<s, 0<&< 1)+ P(5— % 5, —3<E<0) (2.4)
0 ifs<2 0 if s <5
= 52 i 2<s<h H g HD 5 < L (2.5)
Loifs>5 1o s> 16

We can define the moment generating function for u, m(t), and apply the Monte
Carlo integration too.

m(t) = /— et f(u)du ~ Z (2.6)

Then the nth moment is:

m OJr (2.7)
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The mean and variance can be evaluated as follows.

E(u) = m/(0%) ~ Elf Z w, (2.8a)
M
Var(u) = m"(0%) — (B(u))? ~ -]-é[. > (w)? — (B(w)” (2.8b)

3 Certified Reduced Basis Methods

In [1] we proposed certified reduced basis methods to enable the efficient and reliable
evaluation of a general output that is implicitly connected to a given parameterized
input through the harmonic Maxwell’s equations. The truth approximation and the
development of the reduced basis through a greedy approach is based on discontinuous
Galerkin approximations of the linear partial differential equation. The development
allows the use of different approximation spaces for solving the primal and the dual
truth approximation problems to respect the characteristics of both problem types,
leading to an overall reduction in the off-line computational effort.

The main features of the method are: i) rapid convergence on the entire set of pa-
rameters, ii) rigorous a posteriori error estimators for theoutput and iii) a parameter
independent off-line phase and a omputationally very efficient on-line strategy to en-
able the rapid solution of many query problems arising in control, optimization, and
design. The versatility and the performance of this approach is shown through some
numerical experiments, illustrating the modeling of material variations, problems with
resonant. behavior, and applications related to radar scattering prediction.

In [2] A Galerkin approach was combined with a reduced basis method for the eval-
uation of outputs of interest implicitly depending on a given input via the resolution
of a PDE issue from a harmonic wave propagation problem. The main features of
the method are: i) rapid convergence on the entire set of parameters, ii) a posteriori
error estimators for the output and iii) an off-line (parameter independent) on-line
(very fast) computational strategy. In the present paper we allow the use of different
approximation spaces for solving the primal and dual truth approzimation problems
reducing the off-line computational effort.

In[3] In a posteriori error analysis of reduced basis approximations to affinely pa-
rameterized partial differential equations, the construction of the lower bounds for
coercivity and inf-sup stability constants is required. In [1] the authors presented an
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efficient method compatible with an off-line/on-line strategy, where the online cormpu-
tation is reduced to minimizing a linear functional (assuming the affine dependence
on the parameters) under a few linear constraints reflecting stability information.
These constraints depend on nested sets of parameters obtained iteratively using a
greedy algorithm. In the paper, we improved this method so that it becomes more
efficient and have a nice property, namely, the computed lower bound is monotoni-
cally increasing with respect to the nested sets. The new method is applied to the
construction of the inf-sub stability constant of an electromagnetic cavity problem,
providing good lower bounds and capturing the resonance lines very efficiently and
accurately.

4 Problems with random inputs

In [5] we proposed a way of accounting for the lack of detailed knowledge about
material shapes in computational time-domain electromagnetics. We use Legendre-
Gauss-Lobatto, Stroud-2 and Stroud-3 quadrature formulae to solve the resulting
stochastic equation and we show the efficiency of the proposed method over statistical
Monte-Carlo simulations. We also show how the radar-cross-section in scattering is
affected by the uncertainty in shape of the objects and by the direction of the incident
field.

In CHL we discuss computationally efficient ways of accounting for the impact of
uncertainty, e.g., lack of detailed knowledge about sources, materials, shapes, etc., in
computational time-domain electromagnetics. In contrast to classic statistical Monte

rate expansions of general stochastic processes. We show this to be highly efficient
and accurate on both one- and two-dimensional examples, enabling the computa-~
tion of global sensitivities of measures of interest, e.g., radar-cross-sections (RCS) in
scattering applications, for a variety of types of uncertainties.

In [7] Recently there has been a growing interest in designing efficient methods for
solutions of ordinary/partial differential equations with random input. The thisend,
Stochastic Galerkin (SG) methods appear to be superior to other non-sampling meth-
ods, and in many cases, to several sampling methods. However, when the governing
equations take complicated forms, numerical implementations of SG methods can
become non-trivial and care is needed to design robust and efficient solvers for the re-
sulting equations. On the other hand, the traditional sampling methods, e.g., Monte
Carlo methods, are straightforward to implement, but they do not offer convergence



as fast as stochastic Galerkin methods. In this paper, a high-order Stochastic collo-
cation approach is proposed. Similar to SG methods, the collocation methods also
take advantage of the smoothness assumption of the solutions in random space to
achieve fast convergence. One the other hand, the numerical implementation of the
stochastic collocation is trivial as it only requires repetitive runs of an existing de-
terministic solver, similar to Monte Carlo methods. The computational cost of the
collocation methods depends on the choice of the collocation points and we present
several feasible constructions. One particular choice, based on sparse grids, depends
weakly on the dimensionality of the random space and is more siutable for high ac-
curacy computations of practical applications with large dimensional random input.
Numerical examples are presented to demonstrate the accuracy and efficiency of the
stochastic collocation methods.

In [8] It is well known that the steady state of an isentropic flow in a dual-throat
nozzle with equal throat areas is not unique. In particular there is a possibility
tha tthe flow contains a shock wave, whose location is determined solely by the
initial condition. In this paper, we consider cases with uncertainty in this initial
condition and use generalized polynomial chaos methods to study the steady-state
solutions for stochastic initial conditions. Special interest is given to the statistics
of the shock location. The polynomial chaos (PC) expansion modes are shown to
be smooth functions of the spatial variable z, although each solution realization is
discontinuous in the spatial variable x. When the variance of the initial condition is
small, the probability density function (PDF) of the shock location is computed with
high accuracy. Otherwise, many terms are needed in the PC expansion to produce
reasonable results due to the slow convergence of the PC expansion, caused by non-
smoothness in random space.
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